

WEEKLY TEST TYM TEST - 16 Balliwala SOLUTION Date 11-08-2019

[PHYSICS]

- 1. (c) $v = r\omega \implies \omega = \frac{v}{r} = \text{constant [As } v \text{ and } r \text{ are constant]}$
- 2. (c) As time periods are equal therefore ratio of angular speeds will be same. $\omega = \frac{2\pi}{T}$
- 3. (b) Work done by centripetal force is always zero.
- 4. (c) Stone flies in the direction of instantaneous velocity due to inertia
- 5. (a) $F = \frac{mv^2}{r}$. If m and v are constants then $F \propto \frac{1}{r}$ $\therefore \frac{F_1}{F_2} = \left(\frac{r_2}{r_1}\right)$
- 6. (a,c) Centripetal force $=\frac{mv^2}{r}$ and is directed always towards the centre of circle. Sense of rotation does not affect magnitude and direction of this centripetal force.
- 7. D
- 8. (a) Thrust at the lowest point of concave bridge $= mg + \frac{mv^2}{r}$

9. (a)
$$\frac{a_R}{a_r} = \frac{\omega_R^2 \times R}{\omega_r^2 \times r} = \frac{T_r^2}{T_R^2} \times \frac{R}{r} = \frac{R}{r}$$
 [As $T_r = T_R$]

- 10. (c) $\omega_{\min} = \frac{2\pi}{60} \frac{Rad}{min}$ and $\omega_{hr} = \frac{2\pi}{12 \times 60} \frac{Rad}{min}$ $\therefore \frac{\omega_{\min}}{\omega_{hr}} = \frac{2\pi/60}{2\pi/12 \times 60}$
- 11. (b) $v = 72 \, \text{km / hour} = 20 \, \text{m / sec}$ $\theta = \tan^{-1} \left(\frac{v^2}{rg} \right) = \tan^{-1} \left(\frac{20 \times 20}{20 \times 10} \right) = \tan^{-1} (2)$
- 12. (d) $120 \, rev \, / \, min = 120 \times \frac{2\pi}{60} \, rad \, / \, sec = 4\pi \, rad \, / \, sec$

13. (d) Maximum tension = $m\omega^2 r = m \times 4\pi^2 \times n^2 \times r$ By substituting the values we get $T_{\text{max}} = 87.64 \, N$

14. (d)
$$\frac{v^2}{rg} = \frac{h}{l} \Rightarrow v = \sqrt{\frac{rgh}{l}} = \sqrt{\frac{50 \times 1.5 \times 9.8}{10}} = 8.57 \, \text{m/s}$$

15. (b) $a = \omega^2 r = 4\pi^2 n^2 r = 4\pi^2 \times 1^2 \times 20 \times 10^3$ $\therefore a = 8 \times 10^5 \text{ m/sec}^2$

[CHEMISTRY]

- 16.
- 17. $CH_2=CH-CH_2-C=CH$ has 10σ -bonds are 3π -bonds
- 18. SiF_4^2 is tetrahedral and SF_4 is see-saw shaped.
- 19. BrO₃ and XeO₃ both have sp³-hybridisation and pyramidal shape.
- 20. $\stackrel{\otimes}{NO_2}$ is $O = \stackrel{\otimes}{N} = O$ linear ion.
- 21. BF_3 and NO_2^- have sp^2 -hybridised central atom while NH_2^- and H_2O have sp^3 hybridised central atom.
- 22. Sp²-hybridisation
- 23. F—Xe—F
- 24. S F
- 26. Bond orders of O_2^{2-}, O_2^{-}, O_2 and O_2^{+} are 1, 1.5, 2 and 2.5 respectively. (Please, refer to the text article no. 5.25)
- NO has 15 electrons: KK $(\sigma_{15})^2 (\pi_{15}^*)^2 (\pi_{2p_x})^2 (\pi_{2p_y})^2 (\sigma_{2p_z})^2 (\pi_{2p_x}^*)^1$ with bond order 2.5, paramagnetic nature. NO+ has 14 electrons, where $(\pi_{2p_z}^*)^1$ electron is lost. The bond order increases to 3 and diamagnetic nature is attained.